PYTHON'S HISTORY, PROFILE AND
USE

PYTHON'S HISTORY

e Created by Guido van Rossum.

e Published officially for the first time in February
1991.

e OnJanuary 26, 1994, the first major version was
released.

e Python 3.0 was released on December 8, 2008.

e Python 3.0 is currently the only officially updated
and supported version of Python.

LANGUAGE PROFILE

e Simple and clear

e Sensitive to spaces

e High-level

e Interpreted

e Dynamically typed

e Object oriented

e Alarge standard library
e |tisfree

MAIN USE OF PYTHON

e Artificial intelligence and machine learning
e Creating websites

e Testing

e Task automation

e DevOps practice

e Data analysis

THE FIRST PROGRAM: HELLO,
WORLD!

BEFORE WE START...

Make sure you have installed:

e Python version 3.7.

e PyCharm Community.
Installation instructions can be found in the appropriate
document in the introduction module visible in Gitlab.

HELLO, WORLD!

print("Hello, World!")

HOW THHIS PROGRAM WORKS

"Hello, World!"

e The Hello, World! is displayed on the screen.

e The built-in function print() was used.

e The function has the parameter in brackets - itis
what we want to write and display on the screen.

FUNCTION - THE EXPLANATION

For now, let's say a function is a certain behavior:
something must be done depending on the given
parameters. A coffee machine is a good example of such
a function.

The right coffee type is prepared (function) depending
on what the user chooses (parameter).

DATA TYPES

DATA TYPES IN PYTHON

Several data types are built into Python:
 int-integers.
 float - floating-point numbers (real numbers).
e complex - complex numbers.
e str and bytes - text sequences.
e bool - boolean data type: true / false.
e NoneType - special, undefined type of non-existent
values.

DATA TYPES IN PYTHON: EXAMPLES

Data
Sample values
type
int 0,1,-3,128,4567654324567,0b111,
0x18C
float 0.123, 256.2,-3.14, 1e10
complex (1-2j), (30+15j), 3j
str "text", "", "also!@#S5%"text", 'single
quotes'
bytes b"bytes sequence", b'123456'
bool True, False

NoneType None

PRINTING VARIOUS TYPES OF DATA ON THE SCREEN

print("Text to print.")
print(-17)

print(123.4)
print(False)
print(None)

CHECKING THE DATA TYPE

In Python, we can check the data type by using the built-
in type() function:

type("What is the data type of this data?")

CHECKING THE DATA TYPE - THE TYPE() FUNCTION

e The type() function takes the parameter the same
way as the print() function.

e The type() returns a text value that is the type name
of its parameter.

» We can write the data type by combining both
functions:

print(type("What is the data type of this
data?"))

print(type(10.2))

print(type(True))

VARIABLES AND OPERATORS

VARIABLES

Variables are containers for storing data. Think of
variables as boxes where we can store something i.e. a
value (implicitly).

A variable definition in Python:

number = 10

word = "text"

big number = 99999.999
truth = True

VARIABLES

A variable:
e has aname,
e has avalue,
e hasits place in the computer's memory.

A VARIABLE NAMING CONVENTION

e You can change the value of a variable by assigning a
new value.

The variable name can only contain letters: a-z, A-Z,
numbers 0-9 and the _ symbol.

It is case sensitivite!

The variable name cannot start with a digit!

In Python, variables are named in the snake case
style: each word is separated by an underscore
(very _big number) andin the CamelCase style: a
new word starts with a capital letter
(VeryLongString) - the latter is reserved for
classes.

VARIABLE NAMING CONVENTION

Allowed solutions:

SUPER_VARIABLE =1
bestVariableEverl123 = "OK"
_my_name = "Alice"
anotherl variable2 = 5.5

= True

Not allowed:

123variable = 2
wrong$name%123 = False
I@A1mOStGoODone!@ = None
12345 = "bad_name"
VARIABLE-1 = ©

TYPES

Python allows you to define the type of a variable. This
is optional and is only a suggestion.

TYPES

The fact that Python types are only a suggestion makes
the following code work without any problems:

number: int = 'i am a string’

print(type(number)) # prints <class 'str'>

PRINTING VARIABLES ON THE SCREEN

Variables store values so they can be used as function
parameters.

number = 10
new word = "new string"

print(number)
print(new_word)

print(type(number))
print(type(new_word))

A COMMENT IN PYTHON

Declares the variable and assign 1t to a
value

number = 10

print(number) # Prints 160

The # character starts the comment. Everything that
follows it until the end of the line is ignored.

KEYWORDS

and as assert | async | await break
class continue | def del elif else
except False finally | for from global
if import in IS lambda | None
nonlocal | not or pass | raise return
True try while | with | yield

OPERATORS

Arithmetic
operators/td>

+a T *) **’/2//: 0/0

Comparison
operators

== = < > <= >=
)Ty Ty ’

Assignment
operators

= +:’ -, *:, **:’ /:: //:; 0/0:, &:) A:)

|:’ <<:, >>:, |:

ldentity
operators

IS, is not

Logical
operators

and, or, not

Membership
operators

in, not in

Bit operators

& AND, | OR, A XOR, ~ NOT, << left
shift, >> right shift

ARITHMETIC OPERATORS

They are used for mathematical operations - addition,
subtraction, etc.

Arithmetic operators
print(1 + 2 + 5 - (2 * 2))
print(501.0 - 99.9999)
print(2 ** 3)

print(10.0 / 4.0)
print(10.0 // 4.0)

print(5 % 2)

Text concatenation

name = "John"

greeting = "Hello, " + name
print(greeting)

joe = "Joe"
jane = "Jane"

print(joe + " and " + jane)

Repetition of text

message = "Hi"
print(message * 2)
new _message = "Hi" * 5

print(new_message)

number = 3

message = message * number
print(message)

ERRORS IN THE PROGRAM - EXCEPTIONS

Python cannot be fooled. When we try to add a number
and a string, it will return an error (also called the
exception):

print(1 + "a")

Traceback (most recent call last):
File "main.py", line 1, in <module>
1+ "a"
TypeError: unsupported operand type(s) for
+: 'int' and 'str'

EXAMPLES OF EXCEPTIONS

e TypeError
ValueError
NameError
ZeroDivisionError
SyntaxError

ASSIGNMENT OPERATORS

They are used to assign / set values to variables.

num = 3

num = num + 4
print(num)
num += 2
print(num)
num -= 1
print(num)
num = num * 3
print(num)
num /= 2

num **= 3

num = num // 2
print(num)

COMPARISON OPERATORS

They are used in operations where two values are
compared.

john_1 = "John"

john 2 = "John"
print(john_1 == john_2)
print(1 != 1)

print(99 < 1.1)
print(99 > 1.1)
print(-32 >= -33)
print(123 <= 123)

LOGICAL OPERATORS

Operators used in Boolean algebra operations.

print(True or False)
print(False and False and True)
print(not False)

is _greater = 40 > 30

print(not is_ greater)

MEMBERSHIP OPERATORS

They are used to test for assigning membership in a
sequence, such as strings, lists, or tuples.

print("fox" not in "cow, dog, cat")
print("great" in "Python is great!!!")

COMPATIBILITY WITH UTF-8

ASCII

e |tis acharacter encoding system.

e |t has 7 bits.

|t can assign: latin letters, numbers, punctuation
marks and other symbols to numbers from 0 to 127.

e An example: the letter "A" corresponds to the
number 65.

e |t was created in 1963.

e You cannot use this coding to write letters from, for
instance, the Polish or Chinese alphabet.

UTF-8

e UTF-8 (Unicode Transformation Format - 8-bit) - a
Unicode encoding system.

e |tisthe default character encoding system.

e |tuses 1to 4 bytesto encode asingle character.

e |tis ASCII compatible.

e Currently it encodes over one million characters.

e Character codes have the "U +" prefix.

UTF-8 AND PYTHON

e Python 3.Xis encoded in UTF-8 by default.

e This means that diacritics can be used in strings.

e |tisalso possible to use e.g. Polish characters in the
names of variables, functions or classes, but this is
not recommended (people of other nationalities
may participate in the project).

UTF-8 AND PYTHON - AN EXAMPLE

This is fine:
text _en = "Hi, young programmers!"
text fr = "Voiy ambigué d'un cceur qui, au

zéphAr, préfere les jattes de kiwis."
text_cn = "{R¥F, HFR"
print(text_pl)
print(text_fr)
print(text_cn)

This is not recommended though it works:

= = 7

turtle "turtle”
vérité = True
print (B£0)
print(tortoise)
print(vérité)

STRING FORMATTING

PRINTING STRINGS

There are four ways to print data:
1. Without any formatting.
2. The printf formatting from the C language - an older
solution.
3. The str.format() formatting - a newer solution.
4. The f-string interpolation - the latest solution.

THE PRINT() FUNCTION

We have already talked about the print() function. In
addition to what we already know, it offers some
interesting solutions. It can:
e Display several values at once.
e Define the separator between the values
(parameters) given to it.
e Add a string after the last value.

THE PRINT() FUNCTION - MULTIPLE VALUES AT ONCE

Displaying multiple strings at once
print("What", "a", "beautiful", "day", ".")
print("1", "2", 3, 4, 5)

fruit = "orange"

print("apple", "banana", fruit)

THE PRINT() FUNCTION - SEPARATOR

Displaying multiple strings with a
separator simultaneously
print("What", "a", "beautiful", "day", ".",

sep=Il_ll)
print("1", "2", 3, 4, 5, sep=" < ")
fruit = "orange"

print("apple", "banana", fruit, sep=" + ")

THE PRINT() FUNCTION - LAST STRING

Displaying multiple strings
simultaneously with a separator and final

string
print("What", "for", "beautiful", "day",
ll.ll, Sep:“—", er.](j=|I! \nll)

print("1", "2", 3, 4, 5, sep="<", end="<...
\n")

fruit = "orange"

print("apple", "banana", fruit, sep="+",
end="= yummy \n")

By default, the end parameter uses the newline
character ("\n").

FORMATTING STRINGS IN THE PRINTF STYLE

The printf style uses the % sign. It substitutes values in
the order defined by the programmer.

Format and display (older solution)
title = "General”
name = "Kenobi"

print("Hello there, %s %s" % (title, name))

A

Hello there

FORMATTING STRINGS IN THE STR.FORMAT() STYLE

o It gets rid of the % character.

e Formattingis done by calling the format () function
on the string.

Format and display (newer solution)
title = "General”
name = "Kenobi"

print("Hello there, {} {}".format(title,
name))

FORMATTING STRINGS IN THE STR.FORMAT() STYLE

By using the format() function, you can add values to
the string in any order.

Format and display (most recent solution)
title = "General”

name = "Kenobi"
print("Hello there, {name}
{title}".format(name=name, title=title))

Format and display (most recent solution)
title = "General"”
name = "Kenobi"

print("Hello there, {1} {0}".format(title,
name))

INTERPOLATION OF F-STRING

e Available from Python 3.6.
e Getsrid of the format() function.
e Strings must be preceded by the letter f: f"...".

Format and display (lLatest method)
title = "General”
name = "Kenobi"

print(f"Hello there, {title} {name}")

INTERPOLATION OF F-STRING

The f-string formatting can calculate the value of an

expression (e.g. a string of mathematical operations) in
runtime:

Format and display (lLatest method)

a =2

b =7

print(f"{a} times {b} to the power of 2 is
{(a * b) ** 2}.")

INTERPOLATION OF F-STRING

Formatting also allows us to add a specific number of
spaces to the left or to the right of the string:

headerl = "Name"
header2 = "Age"
name = "John"
age = 22

print(f"| {headerl} | {header2} [|")
print("-" * 27)
print(f"| {name} | {age} |")

INTERPOLATION OF F-STRING

You can also define how many digits after the decimal

point should be displayed or display the number as a
percentage:

Changing the way the variable 1is
displayed

n = 109.2345654324

print(f"{n: .3f}") # will display 109.234

percent = 0.71
print(f"{percent: .1%}") # will display
71.0%

BASIC OPERATIONS ON STRINGS

WHAT ARE PYTHON STRINGS?

e Asequence of characters in a specific order.

e Sequences are indexed from 0.

H

e

l

l

o

)

W

0]

0

1

2

3

4

5

7

8

10

11

12

THE LEN () FUNCTION

The len() function returns the number of charactersin a
string.

Prints the number of characters in the
sequence

sentence = "Lorem ipsum dolor sit amet..."

print(len(sentence)) # Prints 29

THE .INDEX () FUNCTION

The .index() function searches for a given element from
the start of the list and returns the lowest index where
the element appears:

Displays the index of the first
occurrence of the Lletter 'o' in the sequence

hello = "Hello, World!"

print(hello.index('o"')) # Prints 4

Hiell [l |0o], Wilol|r |l |d |!
O(1(2(3|4|5|6|7 891011 12

THE .COUNT() FUNCTION

The .count() function returns the number of occurrences
of the substring in the given string.

Displays the number of occurrences of the
Letter 'o' in the sequence

hello = "Hello, World!"

print(hello.count('o')) # Prints 2

EXTRACTING A SINGLE CHARACTER FROM THE

TRIN
S Tﬁe o%erator []is used to refer to individual characters

in the string.

Displays the eight character of the
string, counting from 0!

hello = "Hello, World!"

print(hello[7]) # Prints W

Hie|l |l |o], Wio|r |l |d |!
0O|11(2(3|4|5|6|7 [8]|9|10 |11 |12

STRING SLICING

The [] operator can also be used to extract several
characters at once.

Extracts substring from the string
hello = "Hello, World!"
print(hello[7:12]) # Prints World

Hiell [l |[0o], Wilol|r |l |d |!

0O|1|12|3|4|5|6|7 8910|1112

STRING SLICING WITHOUT SOME CHARACTERS

Extracts substring from the string,

omitting every second character

hello = "Hello, World!"

print(hello[7:12:2]) # Prints "Wrd"

Hiell [l |0o], W

0|11|2|3|4|5|6]|7

10

11

12

REVERSING THE STRING

Using a special command with the [] operator, we can
read the string from the end.

Prints characters 1in reverse order

hello = "Hello, World!"

print(hello[::-1]) # Prints "! dlroWw,
olLleH"

THE .UPPER() FUNCTION

The .upper() function returns the same string it is called
for, changing all lowercase characters to uppercase
ones.

Displays the 1inscription in capital
Letters

hello = "Hello, World!"

print(hello.upper()) # Prints HELLO, WORLD!

THE .LOWER() FUNCTION

The .lower() function returns the same string it is called
for, changing all uppercase characters to lowercase
ones.

Displays the 1inscription in Lowercase
hello = "Hello, World!"
print(hello.lower()) # Prints hello, world!

COLLECTIONS

WHAT ARE COLLECTIONS?

Collections are containers (variables of a complex type)
that can aggregate more than one value.

o list (list),

e dictionary (dict),

e tuple,

o set.

LIST

|t can store multiple values.
e Values can be of different types.
e [and] are used to create the list.

Declare and 1initialize the Lletter
variable

alphabet = [] # Declares an empty List

Prints the number of elements 1in the Llist

print (f"Current length of the alphabet
variable: {len(alphabet)}")

LIST.APPEND ()

The .append() function is used to add items to the end
of the list.

Let's add some Lletters to the variable
from the previous slide

alphabet.append("a")

alphabet.append("b")

alphabet.append("c")

Prints the content and Llength of the List

print (f"Alphabet: {alphabet} (length:
{len(alphabet)})")

INDEXING LISTS

Similarly to characters in strings, items in the list are
indexed (counted) from 0!!

Indexing
print(f"The first letter of the alphabet is
'{alphabet[0]}"'.")

LIST.EXTEND()

The .extend() function allows you to add multiple items
to the list at the same time.

Let's add several elements at once

alphabet.extend(["f", "d", "g", "e"])

print(f"Alphabet (confused): {alphabet}
(length: {len(alphabet)})")

LIST.SORT()

We use the .sort() function when we want to sort items
in a given list.

alphabet.sort()
print(f"Alphabet (sorted): {alphabet}
(length: {len(alphabet)})")

THE SORTED() FUNCTION

We use the sorted() function when we want to sort

elements in a given list without changing the list itself -
a new, sorted list will be returned, while the old one will
remain intact.

Sorting list using the sorted() function
sorted alphabet = sorted(alphabet)
print(f"Alphabet (sorted):
{sorted alphabet}, alphabet (unsorted):
{alphabet})")

OTHER LIST FUNCTIONS

To view all list functions, enter the help(list) command
in the terminal.

e .count(x)

e .index(x)

e .insert(index, x)

e .pop(index)

* .pop()

e .remove(x)

e .clear()

e .reverse()

SLICING LISTS

users = ["Alice", "Bob", "Chris", "John"]
print(users)

print(users[0:3])

print(users[1:2])

print(users[2])

print(users[1:])

DICTIONARY

e Itissimilarto the list, but instead of indexes, a key-

value pair is used.
* Any value stored in the dictionary can be extracted

by entering the key.
e {and} are needed to create the dictionary.

DICTIONARY

Create an empty dictionary
phonebook = {}

Add two 1items
phonebook["John"]
phonebook["Jack"]

111111111
222222222

print(phonebook)
print(phonebook["Jack"])

Definition of the finished dictionary
phonebook2 = {

"John": 111111111,

"Jack": 222222222

DELETING ITEMS FROM THE DICTIONARY

To remove items from the dictionary, use the:
e .pop() function,
o del keyword.

phonebook = {"John": 111111111, "Jack":
222222222}

We remove items
del phonebook["John"]
phonebook.pop("Jack")

print(phonebook)

DICT.GET()

The .get() function of the dictionary returns the value
under the key given as a parameter.

letters = {"a": 1, "b": 2}
print(letters.get("c")) # Prints None

We can specify the second argument. It will be the value
that should be returned if the key does not exist in the
dictionary.

print(letters.get("c", 0)) # Prints @

TUPLE

e Alist that cannot be modified after its creation.

e (and) can be used to define it.

o Alternatively, a tuple can also be defined by entering
a comma.

TUPLE (TUPLE)

Declaration of an empty tuple
tuple 1 = ()

Tuple empty declaration
tuple 2 = ("dog", "cat", 2000, 5.0, True)
tuple 3 ("a", 2, "c", [1, 2, 3])

SLICING TUPLES

Accessing tuple item (s)

tuple 4 = (1, 10.5, False, None, "string")
print(tuple 4[2]) # Prints False
print(tuple 4[1:3]) # Prints (10.5, False)

SET

A non-indexable and unordered collection.

Written with { and } characters.

An empty set is created by using the set() command.
Set values are not repeated.

There is no access to elements, set elements do not
have indexes.

SET

Create a set
animals = {"dog",

cat", "elephant"}

Add a new 1item
animals.add("mouse"

Add several 1items at once
animals.update(["bird", "horse"])

Add the same item again
animals.add("mouse"
print(animals)

Remove an 1item, Python will throw an
error if it is not in the set
animals.remove("cat")

Remove an 1item, Python will NOT throw an
error if it is not 1in the set
animals.discard("cat")

MODIFIABLE (MUTABLE) AND NON-MODIFIABLE
(IMMUT[ABLE) TYPES
Mutable

o list,

e collection,
o dictionary.
Immutable

e int

float,
bool,

str.

tuple
frozenset.

USER INPUT

DATA INPUT

All applications operate on data. One such source is the
data collected from the user. They can be downloaded
by:
e various controls, including text boxes, drop-down
lists and checkboxes,
e command line parameters.

THE INPUT() FUNCTION

e Allows the user to enter certain data.

e Python stops the program until the user confirms
the entered data.

* The parameter is the message that appears on the
screen when the user is asked to enter data.

Ask the user to enter data and write it
out

print("Welcome.")

user_name = input("Enter your name:")

print(f"Hello, {user name}!")

COMMAND LINE PARAMETERS

Parameters are given explicitly by the user after the file
name when starting the program.

python my-program.py 1 2 secretkey

COMMAND LINE PARAMETERS

e Inorderto capture parameters from the command
line, attach a code (library) to the program. That will
help the program to read the parameters.

e The code will extract the parameters in the form of a
string list.

e The first element of the list is always an absolute
path. It describes how to access a given file or
directory starting from the root of the file system.

e The next elements are the parameters passed to the
program when it is started from the terminal.

COMMAND LINE PARAMETERS

you

python my-program.py first-arg 2

Add a sys Library to the program to help
read the parameters you specify
import sys

print(f"Program: {sys.argv[0]}")
print(f"First argument: {sys.argv[1]}")
print(f"Second argument: {sys.argv[2]}")

CONTROL STATEMENTS

PROGRAM CONTROL

Python supports instructions that can change the order
in which the code is executed (usually it goes from top
to bottom).
These instructions are:

o conditional statements (if, elif, else),

 loops (for, while).

CONDITIONAL STATEMENTS

In the real world, we often have to make some choices.
If it rains then | will take an umbrella with me.

In programming, the if statement allows us to make
various decisions in the code, depending on the given
condition.

THE IF STATEMENT

Here's how decisions are made in programs:

if

e The value <condition> must be translatable into a
Boolean value (True / False).

e |fthe <condition>is true (it is translated into True),
Python will execute the <instructions>.

e Anindentation is required!

THE IF STATEMENT - AN EXAMPLE

if x > y: # This will be translated to
False because © is not greater than 3
print(f"{x} is greater than {y}") #
This will not be displayed

if x < y: # This will be translated to True
because 3 1s greater than 0
print(f"{x} is less than {y}") # This
will be displayed

INDENTATIONS

e Python's recognizable feature.
e In order to execute more than one instruction in the
if block, all instructions must be indented in the

code.

if condition:
instruction_1
instruction 2
instruction_3

instruction_n
Next instructions_after if block

Indentation is used in Python to create blocks of code or
compound statements.

THE ELSE STATEMENT

As in real life, programming allows you to make another
choice if a certain condition is not met. The else clause
is used for this.

if

else

The else statement is an optional statement and there
could be at most only one else statement following if
statement.

THE ELSE STATEMENT - AN EXAMPLE

if x > y: # This will be translated to
False because © is not greater than 3
print(f"{x} is greater than {y}") #
This will not be displayed
else: # This will be translated to True
because 3 1s greater than ©
print(f"{x} is less than {y}") # This
will be displayed

THE ELIF STATEMENT

There is also a way to make one of many choices
depending on which of the available conditions will be
met first.

if condition:
instructions

elif other _condition:
other_instructions

elif even other_condition:
even_other _instructions

else:
even_more_other_instructions

THE ELIF STATEMENT

e Any number of elif clauses can be implemented in
the conditional statement.

e The elif clause is optional.

* If no condition (neither for if nor for any of the elif

statements) is met, the instructions in the else block
(if added) will be followed.

THE ELIF STATEMENT

if x > y: # This will be translated to
False because © is not greater than 3
print(f"{x} is greater than {y}") # It
will not be displayed
elif x == 3: # This will be translated to
False because © is not equal to 3
print(f"{x} is equal {y}")
else: # This will be translated to True
because 3 1s greater than 0
print(f"{x} is less than {y}") # It
will be displayed

LOOPS

ITERATIONS

An iteration is a repeated execution of a set of
statements. Programming structures that implement
iterations are called loops.

In the infinite iteration, the number of loop executions
is not specified in advance. A given code block is
executed many times, as long as a certain condition is
met.

In the defined iteration, the code block will be repeated
a specified number of times.

THE WHILE LOOP

e The loop is executed as long as the <condition>is
true.

e Itis checked if the <condition>value is True. If so,
the <instructions> are executed. If not - Python skips
the loop block and executes the statements outside
of it.

o After executing the while loop block, the <condition>
is checked again. If it is still true, the loop is executed
again.

while

THE WHILE LOOP - EXAMPLE

This program will write the numbers 1,2,3,4,5-eachin
a new line.

Make Loops as Long as n 1s less than 5
n =0
while n < 5:
n += 1 # increment n with each Loop
Loop
print(n)

LOOP TERMINATION

The break statement:
e Immediately stops the current iteration and the loop
itself.
e The program exits the loop block and continues to
execute instructions outside of it.
The continue statement:
e Immediately stops the current iteration and
continues with the next one.
o Before starting the next cycle, the <condition> is
checked again. This determines whether the next
loop should happen or not.

THE WHILE LOOP - EXAMPLE 2

This program will write numbers 2 and 3, each in a new
line.

Make Loops as long as n is less than 5
n =0
while n < 5:

n += 1 # increment n with each Loop

Loop
if n == 4: # 1f n 1s 4, end the Lloop
break
if n == 1: # 1f n 1s 1, start a new
1teration
continue

print(n)

THE FOR LOOP

for in

e An <iterable>is a collection of variables / values after
which we can iterate - for instance, a list.

e Indentations will be needed to create the loop block.

e With the for loop we can execute a set of statements
once for each item in a given: list, tuple, set etc.

e The <var>variable takes the value of each element
in the <iterable> collection and is available in the
loop.

THE FOR LOOP - AN EXAMPLE

The program will print all items in the list.

animals = ["Dog", "Cat", "Fish"]

List all animals from the animals Llist
for animal in animals:
print(animal) # Lists one animal 1in
turn

LOOP TERMINATION - FOR

The break and continue commands are fully supported
in the for loop.

THE RANGE() FUNCTION

range(start, stop, step)

e Therange() function returns an iterable object
containing numbers from 0 to start if only the
number start is given as an argument.

e Therange() function returns an iterable object
containing numbers from start to stop excluding the
number stop, if both start and stop are given.

e Optionally, you caninclude the step parameter
specifying how many elements between values
should be skipped.

THE RANGE() FUNCTION - EXAMPLES

Will print 0, 1, 2 in new l1ines
for i in range(3):
print(i)

Will print -3, -2, -1, © in new Ll1ines
for i in range(-3, 1):
print(i)

Will print 3, 5, 7, 9 in new Llines
for number in range(3, 11, 2):
print(number)

Will print -1, -2, -3 in new Llines
for number in range(-1, -4, -1):
print(number)

THE ENUMERATE() FUNCTION

e Alotof times when dealing with iterators, we also
want to know the current count of iterations.

» The enumerate() function accepts the collection as a
parameter and returns a tuple with two values: an

element index and the currently considered
element.

fruits = ["apple"”, "banana", "lemon"]

for index, fruit in enumerate(fruits):
print(f"Fruit: {fruit}, under the
index: {index}.")

LIST COMPREHENSION

e Imagine a situation where we want to create a list of
one thousand numbers from 0 to 999.

e The listis too large to enter values manually.

e It can be populated with values using the for loop or
created using the list comprehension mechanism.

LIST COMPREHENSION - AN EXAMPLE

List in Lloop for

numbers = []

for i in range(1000):
numbers.append(i)

print(len(numbers)) # Prints 1000

Folded Llist
numbers = [i for i in range (1000)]
print(len(numbers)) # Prints 16000

DICT COMPREHENSION

Similarly, you can use the dictionary submission
mechanism to initialize the dictionary.

keys and values = [(1, 'a'), (2, 'b'), (3,
el

dictionary = {number: letter for (number,
letter) in keys and values}

INTRODUCTION TO FUNCTIONS

WHAT ARE FUNCTIONS?

e A way to divide the code into useful blocks.

It helps organize the code.

e |t makes the code clearer.

 Instead of repeating the same lines over and over
again, you can use a function that includes these
instructions.

e |t hasinput arguments.

|t calculates and generates the result based on the
given arguments.

* It must be defined before itis used for the first time
in the code!

FUNCTIONS

Functions in Python are defined by entering the def
keyword, the name of the function, its possible
parameters in brackets, and writing the necessary
instructions in its block (remember to indent!).

def function name_ 1():
instructions

def function _name 2(arg 1, arg 2, ...
arg n):
instructions

FUNCTIONS - EXAMPLE 1

Definition of the function named
print_hello _world
def print_hello world():
print("Hello world from inside the
function!")
Calling print_hello_world()
print_hello world()

FEATURES - EXAMPLE 2

Function definition of greet by name
(name)
def greet by name(name):
print(f"Hello, {name}")
Call function greet by name (name) with
"John" as the name argument
greet by name("John")

FUNCTION PARAMETERS

Function parameters can be:

e required (mandatory)

e optional (named parameters).
Arguments for mandatory parameters are usually
passed without giving their names. Arguments for

optional parameters are usually passed with their
names when the function is called.

FUNCTION PARAMETERS - AN EXAMPLE

Function for printing the name and

surname
def print_full name(name, surname):
print (f"{name} {surname}")

Calling a function without specifying thr
parameter names
print full name("Jon", "Snow")

Function call with names of all

parameters
print_full name(name="Jon", surname="Snow")

Calling the function with the names of
the Llast parameter
print_full name("Jon", surname="Snow")

TYPES IN FUNCTIONS

Python gives you the ability to specify types of
arguments and return types. The syntax is similar to the
one we learned when creating variables:

def print hello(text: str) -> None:
print(f"Hello {text}")

print_hello("world")

FUNCTION PARAMETERS - DEFAULT PARAMETERS

Default arguments are values that are provided while
defining functions. These parameters become optional
during function calls. If we provide a value to the default
arguments during function calls, it overrides the default
value.

The definition of the function
greet by name (name) with the default value of
the name

def greet by name(name="World!"):

print(f"Hello, {name}")

Calling the function greet by name (name)
without an argument

greet by name() # Prints "Hello, World!"

Calling the function greet by name (name)
with "John" as the name argument

greet by name("John") # Prints 'Hello,
John'

greet by name(name="John") # Prints 'Hello,
John'

FUNCTIONS - RETURN VALUES

 Python functions can return calculated values by

using the return keyword.
e Ifreturnis notused in the function, then the

function returns the None value.
e The function always returns something!

def calculate square(a):
return a * a

square = calculate square(5)
print(square) # Prints 25

FUNCTIONS - RETURNING TYPES

We can specify the type of returning values. To do so, we
can use the "->" sign and the colon. An example might
look like this:

def get hello(text: str) -> str:
return f"Hello {text}"

print(get hello("world"))

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS

Add two numbers
def add(a, b):
return a + b

Add three numbers
def add(a, b, c):
return a + b + ¢

Add four numbers

def add(a, b, c, d):
return a + b + ¢ + d

What if the user wants to add 10 numbers together?

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS -

ARGS
 Instead of creating functions with a large number of

positional arguments, you can add the args
parameter.

e User-supplied arguments will enter the args list and
will be available from the function itself.

Add any number of numbers
def add(*args):
result = 0
for arg in args:
result += arg
return result

print (add (1,2,3,4,5)) # Prints 15

Prints the name and what the user gives
def print_name_and_something(name, *
strings):
print (f"First name: {name}")
for string in strings:
print (string)

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS -

KWAR
. In%tsead of creating functions with a huge number of

named arguments, you can add the **kwargs
parameter.

e Named arguments given by the user will go to the
dictionary named kwargs and will be available there
in the function.

Add any number of ingredients
def add _ingredients(**kwargs):
result = 0
for key in kwargs:
result += kwargs [key]
return result

print(add_ingredients(eggs=3, spam=5,
cheese=2)) # Will print 10

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS -

ARGS AND KWARG
Any number o nonsl<eyword (*args) and keyword

(**kwargs) arguments can be combined into one
function.

Add any number of ingredients
def add_ingredients(*args, **kwargs):
result = 0
for arg in args:
result += arg
for key in kwargs:
result += kwargs[key]
return result

print(add_ingredients(1, 2, 3, eggs=3,
spam=5, cheese=2)) # Will print 16

Basic operations and methods

Task 1: Which pizza has the best price/quantity ratio?

Write a program (or function) that will compare the area/price ratio between two pizzas.
In order to calculate the area of a circle P at a given radius r - use this formula

- Formula.

Find a restaurant in your area, enter the appropriate data and answer the question
asked in the recommendation.

Important
You can use the math standard library to get the exact value of pi, but it is not required.
Hint

It's worth creating a function that computes the whole so that it doesn't repeat itself
twice.

Task 2: Prime numbers (what if they are second?)

Write a program that checks if a given number is preceded by a prime number.
Important

When checking if n is prime, you don't need to check potential divisors from 2 to n. You
((::)rcl);j;?r:)atically reduce the number of comparisons by only checking from 2 to v (n)

Example:

Let's try to find all the divisors of 100 and list them in the form of a table:

2 x 50 = 100
4 x 25 = 100
5 x 20 = 100
10 x 10 = 100 <-- V(100)
20 x 5 = 100
25 x 4 = 100
50 x 2 = 100

It can be seen that by reaching \ (100) - all divisors have already been found. This
property applies to any value of n.

https://www.mathsisfun.com/geometry/circle.html
https://www.britannica.com/science/rational-number

Hint

It's best to start by checking if the number you are checking is two, one, or divisible by
2.

There are many possible solutions when you search for a prime number on the Internet.
Try to implement an additional one.

Task 3: Dancing parabolas

Write a function (or program) that will calculate the zeros of the given square function.
For this purpose, you can use the formulas presented here.

NOTE

We assume movement only in the space of real numbers, complex solutions are not
required.

Hint
In order to accomplish the task, it is best to create a function that will accept 3

arguments being the coefficients of the equation of the quadratic function. The math
library for the square root calculation will also be useful.

Text formatting

Task: 1 Alice - The cat mom.

Write a function (or program) that will correctly display the sentence "Alice has x
cats" depending on the number of cats. That is it can show: Alice has 1 cat, Alice
has 2 cats, Alice has 10 cats.

Hint

The variation of the word "cat" depends on the remainder by dividing the number of cats
by 10.

Task 2: HP - printer or programming wizard?

The one-whose-name-could-be-not-be-pronounced could talk to snakes. It's time
for him to use Python to relieve himself in the course of his punitive work.

https://www.storyofmathematics.com/zeros-of-a-function

Write a program that will display the given sentence. Every third one will be
capitalized and every fourth one will have an exclamation mark at the end. (Just
don't tell lies!;)

Hint

It will be a good idea to create an additional string. t will be a copy of the repeated
sentence, which, depending on the situation, will receive an additional character
at the end, or it will be written in capital letters.

Task 3: Aaaaaa - that means 6.

Write a function (or program) that will determine the number of vowels in a given
string.

Important
Try to use Counter in your task.
Hint

It is worth writing down the vowels you are looking for in the form of, for example,
a set of vowels.

This solution can also be used with other data structures. Try using a dictionary.

https://docs.python.org/3/library/collections.html#collections.Counter

