
PYTHON'S HISTORY, PROFILE AND

USE

Created by Guido van Rossum.

Published officially for the first time in February

1991.

On January 26, 1994, the first major version was

released.

Python 3.0 was released on December 8, 2008.

Python 3.0 is currently the only officially updated

and supported version of Python.

PYTHON'S HISTORY

Simple and clear

Sensitive to spaces

High-level

Interpreted

Dynamically typed

Object oriented

A large standard library

It is free

LANGUAGE PROFILE

Artificial intelligence and machine learning

Creating websites

Testing

Task automation

DevOps practice

Data analysis

MAIN USE OF PYTHON

THE FIRST PROGRAM: HELLO,
WORLD!

Make sure you have installed:
Python version 3.7.
PyCharm Community.

Installation instructions can be found in the appropriate
document in the introduction module visible in Gitlab.

BEFORE WE START...

HELLO, WORLD!

 print("Hello, World!")

The Hello, World! is displayed on the screen.
The built-in function print() was used.
The function has the parameter in brackets - it is
what we want to write and display on the screen.

HOW THHIS PROGRAM WORKS

 print("Hello, World!")

For now, let's say a function is a certain behavior:
something must be done depending on the given
parameters.
A coffee machine is a good example of such
a function.
The right coffee type is prepared (function) depending
on what the user chooses (parameter).

FUNCTION - THE EXPLANATION

DATA TYPES

Several data types are built into Python:
int - integers.
float - floating-point numbers (real numbers).
complex - complex numbers.
str and bytes - text sequences.
bool - boolean data type: true / false.
NoneType - special, undefined type of non-existent
values.

DATA TYPES IN PYTHON

Data
type

Sample values

int 0, 1, -3, 128, 4567654324567, 0b111,
0x18C

float 0.123, 256.2, -3.14, 1e10

complex (1-2j), (30+15j), 3j

str "text", "", "also!@#$%^text", 'single
quotes'

bytes b"bytes sequence", b'123456'

bool True, False

NoneType None

DATA TYPES IN PYTHON: EXAMPLES

PRINTING VARIOUS TYPES OF DATA ON THE SCREEN

 print("Text to print.")

 print(-17)

 print(123.4)

 print(False)

 print(None)

In Python, we can check the data type by using the built-
in type() function:

CHECKING THE DATA TYPE

 type("What is the data type of this data?")

The type() function takes the parameter the same
way as the print() function.
The type() returns a text value that is the type name
of its parameter.
We can write the data type by combining both
functions:

CHECKING THE DATA TYPE - THE TYPE() FUNCTION

 print(type("What is the data type of this
data?"))

 print(type(10.2))

 print(type(True))

VARIABLES AND OPERATORS

Variables are containers for storing data. Think of
variables as boxes where we can store something i.e. a
value (implicitly).
A variable definition in Python:

VARIABLES

 number = 10

 word = "text"

 big_number = 99999.999

 truth = True

A variable:
has a name,
has a value,
has its place in the computer's memory.

VARIABLES

You can change the value of a variable by assigning a
new value.
The variable name can only contain letters: a-z, A-Z,
numbers 0-9 and the _ symbol.
It is case sensitivite!
The variable name cannot start with a digit!
In Python, variables are named in the snake case
style: each word is separated by an underscore
(very_big_number) and in the CamelCase style: a
new word starts with a capital letter
(VeryLongString) - the latter is reserved for
classes.

A VARIABLE NAMING CONVENTION

Allowed solutions:

Not allowed:

VARIABLE NAMING CONVENTION

 SUPER_VARIABLE = 1

 bestVariableEver123 = "OK"

 _my_name = "Alice"

 another1_variable2 = 5.5

 _____ = True

 123variable = 2

 wrong$name%123 = False

 !@AlmOStGoODone!@ = None

 12345 = "bad_name"

 VARIABLE-1 = 0

Python allows you to define the type of a variable. This
is optional and is only a suggestion.

TYPES

number: int = 5

The fact that Python types are only a suggestion makes
the following code work without any problems:

TYPES

number: int = 'i am a string'

print(type(number)) # prints <class 'str'>

Variables store values so they can be used as function
parameters.

PRINTING VARIABLES ON THE SCREEN

 number = 10

 new_word = "new string"

 print(number)

 print(new_word)

 print(type(number))

 print(type(new_word))

The # character starts the comment. Everything that
follows it until the end of the line is ignored.

A COMMENT IN PYTHON

 # Declares the variable and assign it to a
value

 number = 10

 print(number) # Prints 10

and as assert async await break

class continue def del elif else

except False finally for from global

if import in is lambda None

nonlocal not or pass raise return

True try while with yield

KEYWORDS

Arithmetic
operators/td>

+, -, *, **, /, //, %

Comparison
operators

==, !=, <, >, <=, >=

Assignment
operators

=, +=, -=, *=, **=, /=, //=, %=, &=, ^=,
|=, <<=, >>=, |=

Identity
operators

is, is not

Logical
operators

and, or, not

Membership
operators

in, not in

Bit operators & AND, | OR, ^ XOR, ~ NOT, << left
shift, >> right shift

OPERATORS

They are used for mathematical operations - addition,
subtraction, etc.

ARITHMETIC OPERATORS

 # Arithmetic operators

 print(1 + 2 + 5 - (2 * 2))

 print(501.0 - 99.9999)

 print(2 ** 3)

 print(10.0 / 4.0)

 print(10.0 // 4.0)

 print(5 % 2)

 # Text concatenation

 name = "John"

 greeting = "Hello, " + name

 print(greeting)

 joe = "Joe"

 jane = "Jane"

 print(joe + " and " + jane)

 # Repetition of text

 message = "Hi"

 print(message * 2)

 new_message = "Hi" * 5

 print(new_message)

 number = 3

 message = message * number

 print(message)

Python cannot be fooled. When we try to add a number
and a string, it will return an error (also called the
exception):

ERRORS IN THE PROGRAM - EXCEPTIONS

 print(1 + "a")

 Traceback (most recent call last):

 File "main.py", line 1, in <module>

 1 + "a"

 TypeError: unsupported operand type(s) for
+: 'int' and 'str'

TypeError
ValueError
NameError
ZeroDivisionError
SyntaxError

EXAMPLES OF EXCEPTIONS

They are used to assign / set values ​​to variables.

ASSIGNMENT OPERATORS

 num = 3

 num = num + 4

 print(num)

 num += 2

 print(num)

 num -= 1

 print(num)

 num = num * 3

 print(num)

 num /= 2

 num **= 3

 num = num // 2

 print(num)

They are used in operations where two values ​​are
compared.

COMPARISON OPERATORS

 john_1 = "John"

 john_2 = "John"

 print(john_1 == john_2)

 print(1 != 1)

 print(99 < 1.1)

 print(99 > 1.1)

 print(-32 >= -33)

 print(123 <= 123)

Operators used in Boolean algebra operations.

LOGICAL OPERATORS

 print(True or False)

 print(False and False and True)

 print(not False)

 is_greater = 40 > 30

 print(not is_greater)

They are used to test for assigning membership in a
sequence, such as strings, lists, or tuples.

MEMBERSHIP OPERATORS

 print("fox" not in "cow, dog, cat")

 print("great" in "Python is great!!!")

COMPATIBILITY WITH UTF-8

It is a character encoding system.
It has 7 bits.
It can assign: latin letters, numbers, punctuation
marks and other symbols to numbers from 0 to 127.
An example: the letter "A" corresponds to the
number 65.
It was created in 1963.
You cannot use this coding to write letters from, for
instance, the Polish or Chinese alphabet.

ASCII

UTF-8 (Unicode Transformation Format – 8-bit) - a
Unicode encoding system.
It is the default character encoding system.
It uses 1 to 4 bytes to encode a single character.
It is ASCII compatible.
Currently it encodes over one million characters.
Character codes have the "U +" prefix.

UTF-8

Python 3.X is encoded in UTF-8 by default.
This means that diacritics can be used in strings.
It is also possible to use e.g. Polish characters in the
names of variables, functions or classes, but this is
not recommended (people of other nationalities
may participate in the project).

UTF-8 AND PYTHON

This is fine:

This is not recommended though it works:

UTF-8 AND PYTHON - AN EXAMPLE

 text_en = "Hi, young programmers!"

 text_fr = "Voiÿ ambiguë d'un cœur qui, au
zéphĀr, préfère les jattes de kiwis."

 text_cn = "你好, 世界"

 print(text_pl)

 print(text_fr)

 print(text_cn)

 整数 = 7

 turtle = "turtle"

 vérité = True

 print(整数)

 print(tortoise)

 print(vérité)

STRING FORMATTING

There are four ways to print data:
1. Without any formatting.
2. The printf formatting from the C language - an older

solution.
3. The str.format() formatting - a newer solution.
4. The f-string interpolation - the latest solution.

PRINTING STRINGS

We have already talked about the print() function. In
addition to what we already know, it offers some
interesting solutions. It can:

Display several values ​​at once.
Define the separator between the values ​​
(parameters) given to it.
Add a string after the last value.

THE PRINT() FUNCTION

THE PRINT() FUNCTION - MULTIPLE VALUES ​​AT ONCE

 # Displaying multiple strings at once

 print("What", "a", "beautiful", "day", ".")

 print("1", "2", 3, 4, 5)

 fruit = "orange"

 print("apple", "banana", fruit)

THE PRINT() FUNCTION - SEPARATOR

 # Displaying multiple strings with a
separator simultaneously

 print("What", "a", "beautiful", "day", ".",
sep="-")

 print("1", "2", 3, 4, 5, sep=" < ")

 fruit = "orange"

 print("apple", "banana", fruit, sep=" + ")

By default, the end parameter uses the newline
character ("\n").

THE PRINT() FUNCTION - LAST STRING

 # Displaying multiple strings
simultaneously with a separator and final
string

 print("What", "for", "beautiful", "day",
".", sep="-", end="! \n")

 print("1", "2", 3, 4, 5, sep="<", end="<...
\n")

 fruit = "orange"

 print("apple", "banana", fruit, sep="+",
end="= yummy \n")

The printf style uses the % sign. It substitutes values ​​in
the order defined by the programmer.

FORMATTING STRINGS IN THE PRINTF STYLE

 # Format and display (older solution)

 title = "General"

 name = "Kenobi"

 print("Hello there, %s %s" % (title, name))

It gets rid of the % character.
Formatting is done by calling the format () function
on the string.

FORMATTING STRINGS IN THE STR.FORMAT() STYLE

 # Format and display (newer solution)

 title = "General"

 name = "Kenobi"

 print("Hello there, {} {}".format(title,
name))

By using the format() function, you can add values ​​to
the string in any order.

FORMATTING STRINGS IN THE STR.FORMAT() STYLE

 # Format and display (most recent solution)

 title = "General"

 name = "Kenobi"

 print("Hello there, {name}
{title}".format(name=name, title=title))

 # Format and display (most recent solution)

 title = "General"

 name = "Kenobi"

 print("Hello there, {1} {0}".format(title,
name))

Available from Python 3.6.
Gets rid of the format() function.
Strings must be preceded by the letter f: f"...".

INTERPOLATION OF F-STRING

 # Format and display (latest method)

 title = "General"

 name = "Kenobi"

 print(f"Hello there, {title} {name}")

The f-string formatting can calculate the value of an
expression (e.g. a string of mathematical operations) in
runtime:

INTERPOLATION OF F-STRING

 # Format and display (latest method)

 a = 2

 b = 7

 print(f"{a} times {b} to the power of 2 is
{(a * b) ** 2}.")

Formatting also allows us to add a specific number of
spaces to the left or to the right of the string:

INTERPOLATION OF F-STRING

 header1 = "Name"

 header2 = "Age"

 name = "John"

 age = 22

 print(f"| {header1} | {header2} |")

 print("-" * 27)

 print(f"| {name} | {age} |")

You can also define how many digits after the decimal
point should be displayed or display the number as a
percentage:

INTERPOLATION OF F-STRING

 # Changing the way the variable is
displayed

 n = 109.2345654324

 print(f"{n: .3f}") # will display 109.234

 percent = 0.71

 print(f"{percent: .1%}") # will display
71.0%

BASIC OPERATIONS ON STRINGS

A sequence of characters in a specific order.
Sequences are indexed from 0.

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

WHAT ARE PYTHON STRINGS?

The len() function returns the number of characters in a
string.

THE LEN () FUNCTION

 # Prints the number of characters in the
sequence

 sentence = "Lorem ipsum dolor sit amet..."

 print(len(sentence)) # Prints 29

The .index() function searches for a given element from
the start of the list and returns the lowest index where
the element appears:

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

THE .INDEX () FUNCTION

 # Displays the index of the first
occurrence of the letter 'o' in the sequence

 hello = "Hello, World!"

 print(hello.index('o')) # Prints 4

The .count() function returns the number of occurrences
of the substring in the given string.

THE .COUNT() FUNCTION

 # Displays the number of occurrences of the
letter 'o' in the sequence

 hello = "Hello, World!"

 print(hello.count('o')) # Prints 2

The operator [] is used to refer to individual characters
in the string.

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

EXTRACTING A SINGLE CHARACTER FROM THE
STRING

 # Displays the eight character of the
string, counting from 0!

 hello = "Hello, World!"

 print(hello[7]) # Prints W

The [] operator can also be used to extract several
characters at once.

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

STRING SLICING

 # Extracts substring from the string

 hello = "Hello, World!"

 print(hello[7:12]) # Prints World

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

STRING SLICING WITHOUT SOME CHARACTERS

 # Extracts substring from the string,
omitting every second character

 hello = "Hello, World!"

 print(hello[7:12:2]) # Prints "Wrd"

Using a special command with the [] operator, we can
read the string from the end.

REVERSING THE STRING

 # Prints characters in reverse order

 hello = "Hello, World!"

 print(hello[::-1]) # Prints "! dlroW,
olleH"

The .upper() function returns the same string it is called
for, changing all lowercase characters to uppercase
ones.

THE .UPPER() FUNCTION

 # Displays the inscription in capital
letters

 hello = "Hello, World!"

 print(hello.upper()) # Prints HELLO, WORLD!

The .lower() function returns the same string it is called
for, changing all uppercase characters to lowercase
ones.

THE .LOWER() FUNCTION

 # Displays the inscription in lowercase

 hello = "Hello, World!"

 print(hello.lower()) # Prints hello, world!

COLLECTIONS

Collections are containers (variables of a complex type)
that can aggregate more than one value.

list (list),
dictionary (dict),
tuple,
set.

WHAT ARE COLLECTIONS?

It can store multiple values.
Values ​​can be of different types.
[and] are used to create the list.

LIST

 # Declare and initialize the letter
variable

 alphabet = [] # Declares an empty list

 # Prints the number of elements in the list

 print (f"Current length of the alphabet
variable: {len(alphabet)}")

The .append() function is used to add items to the end
of the list.

LIST.APPEND ()

 # Let's add some letters to the variable
from the previous slide

 alphabet.append("a")

 alphabet.append("b")

 alphabet.append("c")

 # Prints the content and length of the list

 print (f"Alphabet: {alphabet} (length:
{len(alphabet)})")

Similarly to characters in strings, items in the list are
indexed (counted) from 0!!

INDEXING LISTS

 # Indexing

 print(f"The first letter of the alphabet is
'{alphabet[0]}'.")

The .extend() function allows you to add multiple items
to the list at the same time.

LIST.EXTEND()

 # Let's add several elements at once

 alphabet.extend(["f", "d", "g", "e"])

 print(f"Alphabet (confused): {alphabet}
(length: {len(alphabet)})")

We use the .sort() function when we want to sort items
in a given list.

LIST.SORT()

 alphabet.sort()

 print(f"Alphabet (sorted): {alphabet}
(length: {len(alphabet)})")

We use the sorted() function when we want to sort
elements in a given list without changing the list itself -
a new, sorted list will be returned, while the old one will
remain intact.

THE SORTED() FUNCTION

 # Sorting list using the sorted() function

 sorted_alphabet = sorted(alphabet)

 print(f"Alphabet (sorted):
{sorted_alphabet}, alphabet (unsorted):
{alphabet})")

To view all list functions, enter the help(list) command
in the terminal.

.count(x)

.index(x)

.insert(index, x)

.pop(index)

.pop()

.remove(x)

.clear()

.reverse()

OTHER LIST FUNCTIONS

SLICING LISTS

 users = ["Alice", "Bob", "Chris", "John"]

 print(users)

 print(users[0:3])

 print(users[1:2])

 print(users[2])

 print(users[1:])

It is similar to the list, but instead of indexes, a key-
value pair is used.
Any value stored in the dictionary can be extracted
by entering the key.
{ and } are needed to create the dictionary.

DICTIONARY

DICTIONARY

 # Create an empty dictionary

 phonebook = {}

 # Add two items

 phonebook["John"] = 111111111

 phonebook["Jack"] = 222222222

 print(phonebook)

 print(phonebook["Jack"])

 # Definition of the finished dictionary

 phonebook2 = {

 "John": 111111111,

 "Jack": 222222222

 }

To remove items from the dictionary, use the:
.pop() function,
del keyword.

DELETING ITEMS FROM THE DICTIONARY

 phonebook = {"John": 111111111, "Jack":
222222222}

 # We remove items

 del phonebook["John"]

 phonebook.pop("Jack")

 print(phonebook)

The .get() function of the dictionary returns the value
under the key given as a parameter.

We can specify the second argument. It will be the value
that should be returned if the key does not exist in the
dictionary.

DICT.GET()

 letters = {"a": 1, "b": 2}

 print(letters.get("c")) # Prints None

 print(letters.get("c", 0)) # Prints 0

A list that cannot be modified after its creation.
(and) can be used to define it.
Alternatively, a tuple can also be defined by entering
a comma.

TUPLE

TUPLE (TUPLE)

 # Declaration of an empty tuple

 tuple_1 = ()

 # Tuple empty declaration

 tuple_2 = ("dog", "cat", 2000, 5.0, True)

 tuple_3 = ("a", 2, "c", [1, 2, 3])

SLICING TUPLES

 # Accessing tuple item (s)

 tuple_4 = (1, 10.5, False, None, "string")

 print(tuple_4[2]) # Prints False

 print(tuple_4[1:3]) # Prints (10.5, False)

A non-indexable and unordered collection.
Written with { and } characters.
An empty set is created by using the set() command.
Set values are not repeated.
There is no access to elements, set elements do not
have indexes.

SET

SET

 # Create a set

 animals = {"dog", "cat", "elephant"}

 # Add a new item

 animals.add("mouse")

 # Add several items at once

 animals.update(["bird", "horse"])

 # Add the same item again

 animals.add("mouse")

 print(animals)

 # Remove an item, Python will throw an
error if it is not in the set

 animals.remove("cat")

 # Remove an item, Python will NOT throw an
error if it is not in the set

 animals.discard("cat")

Mutable
list,
collection,
dictionary.

Immutable
int
float,
bool,
str.
tuple
frozenset.

MODIFIABLE (MUTABLE) AND NON-MODIFIABLE
(IMMUTABLE) TYPES

USER INPUT

All applications operate on data. One such source is the
data collected from the user. They can be downloaded
by:

various controls, including text boxes, drop-down
lists and checkboxes,
command line parameters.

DATA INPUT

Allows the user to enter certain data.
Python stops the program until the user confirms
the entered data.
The parameter is the message that appears on the
screen when the user is asked to enter data.

THE INPUT() FUNCTION

 # Ask the user to enter data and write it
out

 print("Welcome.")

 user_name = input("Enter your name:")

 print(f"Hello, {user_name}!")

Parameters are given explicitly by the user after the file
name when starting the program.

COMMAND LINE PARAMETERS

 python my-program.py 1 2 secretkey

In order to capture parameters from the command
line, attach a code (library) to the program. That will
help the program to read the parameters.
The code will extract the parameters in the form of a
string list.
The first element of the list is always an absolute
path. It describes how to access a given file or
directory starting from the root of the file system.
The next elements are the parameters passed to the
program when it is started from the terminal.

COMMAND LINE PARAMETERS

COMMAND LINE PARAMETERS

 python my-program.py first-arg 2

 # Add a sys library to the program to help
you read the parameters you specify

 import sys

 print(f"Program: {sys.argv[0]}")

 print(f"First argument: {sys.argv[1]}")

 print(f"Second argument: {sys.argv[2]}")

CONTROL STATEMENTS

Python supports instructions that can change the order
in which the code is executed (usually it goes from top
to bottom).
These instructions are:

conditional statements (if, elif, else),
loops (for, while).

PROGRAM CONTROL

In the real world, we often have to make some choices.
If it rains then I will take an umbrella with me.
In programming, the if statement allows us to make
various decisions in the code, depending on the given
condition.

CONDITIONAL STATEMENTS

Here's how decisions are made in programs:

The value <condition> must be translatable into a
Boolean value (True / False).
If the <condition> is true (it is translated into True),
Python will execute the <instructions>.
An indentation is required!

THE IF STATEMENT

 if condition:

 instructions

THE IF STATEMENT - AN EXAMPLE

 x = 0

 y = 3

 if x > y: # This will be translated to
False because 0 is not greater than 3

 print(f"{x} is greater than {y}") #
This will not be displayed

 if x < y: # This will be translated to True
because 3 is greater than 0

 print(f"{x} is less than {y}") # This
will be displayed

Python's recognizable feature.
In order to execute more than one instruction in the
if block, all instructions must be indented in the
code.

Indentation is used in Python to create blocks of code or
compound statements.

INDENTATIONS

 if condition:

 instruction_1

 instruction_2

 instruction_3

 ...

 instruction_n

 Next_instructions_after_if_block

As in real life, programming allows you to make another
choice if a certain condition is not met. The else clause
is used for this.

The else statement is an optional statement and there
could be at most only one else statement following if
statement.

THE ELSE STATEMENT

 if condition:

 instructions

 else:

 other_instructions

THE ELSE STATEMENT - AN EXAMPLE

 x = 0

 y = 3

 if x > y: # This will be translated to
False because 0 is not greater than 3

 print(f"{x} is greater than {y}") #
This will not be displayed

 else: # This will be translated to True
because 3 is greater than 0

 print(f"{x} is less than {y}") # This
will be displayed

There is also a way to make one of many choices
depending on which of the available conditions will be
met first.

THE ELIF STATEMENT

 if condition:

 instructions

 elif other_condition:

 other_instructions

 elif even_other_condition:

 even_other_instructions

 else:

 even_more_other_instructions

Any number of elif clauses can be implemented in
the conditional statement.
The elif clause is optional.
If no condition (neither for if nor for any of the elif
statements) is met, the instructions in the else block
(if added) will be followed.

THE ELIF STATEMENT

THE ELIF STATEMENT

 x = 0

 y = 3

 if x > y: # This will be translated to
False because 0 is not greater than 3

 print(f"{x} is greater than {y}") # It
will not be displayed

 elif x == 3: # This will be translated to
False because 0 is not equal to 3

 print(f"{x} is equal {y}")

 else: # This will be translated to True
because 3 is greater than 0

 print(f"{x} is less than {y}") # It
will be displayed

LOOPS

An iteration is a repeated execution of a set of
statements. Programming structures that implement
iterations are called loops.
In the infinite iteration, the number of loop executions
is not specified in advance. A given code block is
executed many times, as long as a certain condition is
met.
In the defined iteration, the code block will be repeated
a specified number of times.

ITERATIONS

The loop is executed as long as the <condition> is
true.
It is checked if the <condition> value is True. If so,
the <instructions> are executed. If not - Python skips
the loop block and executes the statements outside
of it.
After executing the while loop block, the <condition>
is checked again. If it is still true, the loop is executed
again.

THE WHILE LOOP

 while condition:

 <instruction_1>

 <instruction_2>

 ...

 <instruction_n>

This program will write the numbers 1, 2, 3, 4, 5 - each in
a new line.

THE WHILE LOOP - EXAMPLE

 # Make loops as long as n is less than 5

 n = 0

 while n < 5:

 n += 1 # increment n with each loop
loop

 print(n)

The break statement:
Immediately stops the current iteration and the loop
itself.
The program exits the loop block and continues to
execute instructions outside of it.

The continue statement:
Immediately stops the current iteration and
continues with the next one.
Before starting the next cycle, the <condition> is
checked again. This determines whether the next
loop should happen or not.

LOOP TERMINATION

This program will write numbers 2 and 3, each in a new
line.

THE WHILE LOOP - EXAMPLE 2

 # Make loops as long as n is less than 5

 n = 0

 while n < 5:

 n += 1 # increment n with each loop
loop

 if n == 4: # if n is 4, end the loop

 break

 if n == 1: # if n is 1, start a new
iteration

 continue

 print(n)

An <iterable> is a collection of variables / values ​​after
which we can iterate - for instance, a list.
Indentations will be needed to create the loop block.
With the for loop we can execute a set of statements
once for each item in a given: list, tuple, set etc.
The <var> variable takes the value of each element
in the <iterable> collection and is available in the
loop.

THE FOR LOOP

 for var in iterable:

 instructions

The program will print all items in the list.

THE FOR LOOP - AN EXAMPLE

 animals = ["Dog", "Cat", "Fish"]

 # List all animals from the animals list

 for animal in animals:

 print(animal) # Lists one animal in
turn

The break and continue commands are fully supported
in the for loop.

LOOP TERMINATION - FOR

range(start, stop, step)
The range() function returns an iterable object
containing numbers from 0 to start if only the
number start is given as an argument.
The range() function returns an iterable object
containing numbers from start to stop excluding the
number stop, if both start and stop are given.
Optionally, you can include the step parameter
specifying how many elements between values
should be skipped.

THE RANGE() FUNCTION

THE RANGE() FUNCTION - EXAMPLES

 # Will print 0, 1, 2 in new lines

 for i in range(3):

 print(i)

 # Will print -3, -2, -1, 0 in new lines

 for i in range(-3, 1):

 print(i)

 # Will print 3, 5, 7, 9 in new lines

 for number in range(3, 11, 2):

 print(number)

 # Will print -1, -2, -3 in new lines

 for number in range(-1, -4, -1):

 print(number)

A lot of times when dealing with iterators, we also
want to know the current count of iterations.
The enumerate() function accepts the collection as a
parameter and returns a tuple with two values: an
element index and the currently considered
element.

THE ENUMERATE() FUNCTION

 fruits = ["apple", "banana", "lemon"]

 for index, fruit in enumerate(fruits):

 print(f"Fruit: {fruit}, under the
index: {index}.")

Imagine a situation where we want to create a list of
one thousand numbers from 0 to 999.
The list is too large to enter values ​​manually.
It can be populated with values ​​using the for loop or
created using the list comprehension mechanism.

LIST COMPREHENSION

LIST COMPREHENSION - AN EXAMPLE

 # List in loop for

 numbers = []

 for i in range(1000):

 numbers.append(i)

 print(len(numbers)) # Prints 1000

 # Folded list

 numbers = [i for i in range (1000)]

 print(len(numbers)) # Prints 1000

Similarly, you can use the dictionary submission
mechanism to initialize the dictionary.

DICT COMPREHENSION

 keys_and_values ​​= [(1, 'a'), (2, 'b'), (3,
'c')]

 dictionary = {number: letter for (number,
letter) in keys_and_values}

INTRODUCTION TO FUNCTIONS

A way to divide the code into useful blocks.
It helps organize the code.
It makes the code clearer.
Instead of repeating the same lines over and over
again, you can use a function that includes these
instructions.
It has input arguments.
It calculates and generates the result based on the
given arguments.
It must be defined before it is used for the first time
in the code!

WHAT ARE FUNCTIONS?

Functions in Python are defined by entering the def
keyword, the name of the function, its possible
parameters in brackets, and writing the necessary
instructions in its block (remember to indent!).

FUNCTIONS

 def function_name_1():

 instructions

 def function_name_2(arg_1, arg_2, ...,
arg_n):

 instructions

FUNCTIONS - EXAMPLE 1

 # Definition of the function named
print_hello_world

 def print_hello_world():

 print("Hello world from inside the
function!")

 # Calling print_hello_world()

 print_hello_world()

FEATURES - EXAMPLE 2

 # Function definition of greet_by_name
(name)

 def greet_by_name(name):

 print(f"Hello, {name}")

 # Call function greet_by_name (name) with
"John" as the name argument

 greet_by_name("John")

Function parameters can be:
required (mandatory)
optional (named parameters).

Arguments for mandatory parameters are usually
passed without giving their names.
Arguments for
optional parameters are usually passed with their
names when the function is called.

FUNCTION PARAMETERS

FUNCTION PARAMETERS - AN EXAMPLE

 # Function for printing the name and
surname

 def print_full_name(name, surname):

 print (f"{name} {surname}")

 # Calling a function without specifying thr
parameter names

 print_full_name("Jon", "Snow")

 # Function call with names of all
parameters

 print_full_name(name="Jon", surname="Snow")

 # Calling the function with the names of
the last parameter

 print_full_name("Jon", surname="Snow")

Python gives you the ability to specify types of
arguments and return types. The syntax is similar to the
one we learned when creating variables:

TYPES IN FUNCTIONS

def print_hello(text: str) -> None:

 print(f"Hello {text}")

print_hello("world")

Default arguments are values that are provided while
defining functions. These parameters become optional
during function calls. If we provide a value to the default
arguments during function calls, it overrides the default
value.

FUNCTION PARAMETERS - DEFAULT PARAMETERS

 # The definition of the function
greet_by_name (name) with the default value of
the name

 def greet_by_name(name="World!"):

 print(f"Hello, {name}")

 # Calling the function greet_by_name (name)
without an argument

 greet_by_name() # Prints "Hello, World!"

 # Calling the function greet_by_name (name)
with "John" as the name argument

 greet_by_name("John") # Prints 'Hello,
John'

 greet_by_name(name="John") # Prints 'Hello,
John'

Python functions can return calculated values ​​by
using the return keyword.
If return is not used in the function, then the
function returns the None value.
The function always returns something!

FUNCTIONS - RETURN VALUES

 def calculate_square(a):

 return a * a

 square = calculate_square(5)

 print(square) # Prints 25

We can specify the type of returning values. To do so, we
can use the "->" sign and the colon. An example might
look like this:

FUNCTIONS - RETURNING TYPES

def get_hello(text: str) -> str:

 return f"Hello {text}"

print(get_hello("world"))

What if the user wants to add 10 numbers together?

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS

 # Add two numbers

 def add(a, b):

 return a + b

 # Add three numbers

 def add(a, b, c):

 return a + b + c

 # Add four numbers

 def add(a, b, c, d):

 return a + b + c + d

Instead of creating functions with a large number of
positional arguments, you can add the args
parameter.
User-supplied arguments will enter the args list and
will be available from the function itself.

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS -
ARGS

 # Add any number of numbers

 def add(*args):

 result = 0

 for arg in args:

 result += arg

 return result

 print (add (1,2,3,4,5)) # Prints 15

 # Prints the name and what the user gives

 def print_name_and_something(name, *
strings):

 print (f"First name: {name}")

 for string in strings:

 print (string)

Instead of creating functions with a huge number of
named arguments, you can add the **kwargs
parameter.
Named arguments given by the user will go to the
dictionary named kwargs and will be available there
in the function.

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS -
KWARGS

 # Add any number of ingredients

 def add_ingredients(**kwargs):

 result = 0

 for key in kwargs:

 result += kwargs [key]

 return result

 print(add_ingredients(eggs=3, spam=5,
cheese=2)) # Will print 10

Any number of non keyword (*args) and keyword
(**kwargs) arguments can be combined into one
function.

FUNCTIONS WITH ANY NUMBER OF ARGUMENTS -
ARGS AND KWARGS

 # Add any number of ingredients

 def add_ingredients(*args, **kwargs):

 result = 0

 for arg in args:

 result += arg

 for key in kwargs:

 result += kwargs[key]

 return result

 print(add_ingredients(1, 2, 3, eggs=3,
spam=5, cheese=2)) # Will print 16

Basic operations and methods

Task 1: Which pizza has the best price/quantity ratio?

Write a program (or function) that will compare the area/price ratio between two pizzas.
In order to calculate the area of a circle P at a given radius r - use this formula
- Formula.

Find a restaurant in your area, enter the appropriate data and answer the question
asked in the recommendation.

Important

You can use the math standard library to get the exact value of pi, but it is not required.

Hint

It's worth creating a function that computes the whole so that it doesn't repeat itself
twice.

Task 2: Prime numbers (what if they are second?)

Write a program that checks if a given number is preceded by a prime number.

Important

When checking if n is prime, you don't need to check potential divisors from 2 to n. You
can dramatically reduce the number of comparisons by only checking from 2 to √ (n)
(root of n).

Example:

Let's try to find all the divisors of 100 and list them in the form of a table:

2 x 50 = 100
4 x 25 = 100
5 x 20 = 100
10 x 10 = 100 <-- √(100)
20 x 5 = 100
25 x 4 = 100
50 x 2 = 100

It can be seen that by reaching √ (100) - all divisors have already been found. This
property applies to any value of n.

https://www.mathsisfun.com/geometry/circle.html
https://www.britannica.com/science/rational-number

Hint

It's best to start by checking if the number you are checking is two, one, or divisible by
2.

There are many possible solutions when you search for a prime number on the Internet.
Try to implement an additional one.

Task 3: Dancing parabolas

Write a function (or program) that will calculate the zeros of the given square function.
For this purpose, you can use the formulas presented here.

NOTE

We assume movement only in the space of real numbers, complex solutions are not
required.

Hint

In order to accomplish the task, it is best to create a function that will accept 3
arguments being the coefficients of the equation of the quadratic function. The math
library for the square root calculation will also be useful.

Text formatting

Task: 1 Alice - The cat mom.

Write a function (or program) that will correctly display the sentence "Alice has x
cats" depending on the number of cats. That is it can show: Alice has 1 cat, Alice
has 2 cats, Alice has 10 cats.

Hint

The variation of the word "cat" depends on the remainder by dividing the number of cats
by 10.

Task 2: HP - printer or programming wizard?

The one-whose-name-could-be-not-be-pronounced could talk to snakes. It's time
for him to use Python to relieve himself in the course of his punitive work.

https://www.storyofmathematics.com/zeros-of-a-function

Write a program that will display the given sentence. Every third one will be
capitalized and every fourth one will have an exclamation mark at the end. (Just
don't tell lies!;)

Hint

It will be a good idea to create an additional string. t will be a copy of the repeated
sentence, which, depending on the situation, will receive an additional character
at the end, or it will be written in capital letters.

Task 3: Aaaaaa - that means 6.

Write a function (or program) that will determine the number of vowels in a given
string.

Important

Try to use Counter in your task.

Hint

It is worth writing down the vowels you are looking for in the form of, for example,
a set of vowels.

This solution can also be used with other data structures. Try using a dictionary.

https://docs.python.org/3/library/collections.html#collections.Counter

